Applications:

- Optical coherence tomography
- Optical metrology
- Optical measurements

Features:

- Wide optical spectrum: 135-nm FWHM
- Coherence length* of around 3.5 μm (in air)
- High output power
- Low Relative Intensity Noise (RIN)
- * Coherence length is determined as full width at half maximum of the coherence function plotted versus mirror displacement.

Specifications:

T-860-HP-I – optically isolated model.

T-860-HP — model without optical isolator for applications with optical feedback of less than $-25~\mathrm{dB}$.

Parameter	Model	Min	Тур	Max
SM-Fiber output power,	T-860-HP	12	15	-
mW	T-860-HP-I	8.0	10	-
Mean wavelength, nm	All	850	-	870
Bandwidth (FWHM), nm	All	125	135	-
Residual spectral				
modulation depth	All	-	2	5
(0.05 nm resolution), %				
Spectral flatness, %	All	-	-	35
Long-term stability, %**	All	±0.5		
Short-term stability, %***	All	±0.1		

^{**} Measurements taken every minute for 8 hours with 100 ms integration time.

All measurements were taken after a one-hour warm-up period at an ambient temperature of 22 \pm 0.5 °C.

Power requirements: 110 V AC or 220 V AC, 50/60 Hz

Operating temperature range: 0 °C to +40 °C

Optical output: FC/APC

Fiber: Corning HI 780

A maximum optical feedback of -25 dB is allowed to run the model without optical isolator (T-860-HP) safely at full power.

PERFORMANCE EXAMPLES

All specifications are subject to change without notice.

Mirror displacement = Optical path difference / 2. Spatial resolution of measurements is 0.5 µm.

^{***} Measurements taken every second for 15 minutes with 100 ms integration time.